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APPLICATION OF THE LAPLACE ADOMIAN DECOMPOSITION AND
IMPLICIT METHODS FOR SOLVING BURGERS’ EQUATION

AVAZ NAGHIPOUR1, JALIL MANAFIAN2

Abstract. In this work, the modified Laplace Adomian decomposition method (LADM) is

applied to solve the Burgers’ equation. In addition, example that illustrate the pertinent features

of this method is presented, and the results of the study is discussed. We prove the convergence

of LADM applied to the Burgers’ equation. Also, Burgers’ equation has some discontinuous

solutions because of effects of viscosity term. These discontinuities raise phenomenon of shock

waves. Some explicit and implicit numerical methods have been experimented on Burgers’

equation but these schemes have not been seen proper in this case because of their conditional

stability and existence of viscosity term. We consider two types of box schemes and implement

on Burgers’ equation to get better results with no artificial wiggles.
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1. Introduction

In the recent decade, the study of nonlinear partial differential equations modelling physical
phenomena, has become an important tool. Nonlinear phenomena are of fundamental impor-
tance in various fields of science and engineering. Most nonlinear phenomena are models of
our real–life problems. The investigation of the travelling wave solutions plays an important
role in nonlinear science. A variety of powerful methods have been presented, such as the
inverse scattering transform [1], sine-cosine method [30], homotopy perturbation method [8],
variational iteration method [14, 23], homotopy analysis method [10, 11], tanh-function method
[13], Bäcklund transformation [19], (G′

G )-expansion method [27] and so on.
In 1980 George Adomian introduced a new method to solve nonlinear functional equations.

This method has since been termed the Adomian decomposition method (ADM) and has been
the subject of many investigations [2, 22, 23]. The ADM involves separating the equation under
investigation into linear and nonlinear portions. This method generates a solution in the form
of a series whose terms are determined by a recursive relation using the Adomian polynomials.
Some fundamental works on various aspects of modifications of the Adomian’s decomposition
method are given by Andrianov [3], Venkatarangan [25, 26] and Wazwaz [31]. The modified
form of Laplace decomposition method has been introduced by Khuri [16, 17]. Agadjanov
[32] solved the Duffing equation by this method. This numerical technique basically illustrates
how the Laplace transform may be used to approximate the solutions of the nonlinear partial
differential equations by manipulating the decomposition method. Elgasery [12] applied the
Laplace decomposition method for the solution of Falkner–Skan equation. Hussain and Khan
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in [15] the modified Laplace decomposition method have applied for solving some PDEs. The
Burgers equation [7, 24]

ut + uux = uxx, (1)

is a nonlinear partial differential equation of second order which appears in various areas of
applied mathematics, such as modelling of fluid dynamics, turbulence, boundary layer behavior,
shock wave formation, and traffic flow [28]. Burgers equation is parabolic when the viscous
term is included. If the viscous term is neglected, the remaining equation is hyperbolic. If
the viscous term is dropped from the Burgers equation the nonlinearity allows discontinuous
solutions to develop. In Burgers equation discontinuities may appear in finite time, even if the
initial condition is smooth. They give rise to the phenomenon of shock waves with important
applications in physics [6]. These properties make Burgers equation a proper model for testing
numerical algorithms in flows where severe gradients or shocks are anticipated. Discretization
methods are well-known techniques for solving Burgers equation. One of the most simple one
is leap-frog explicit scheme [33] which was proposed in the 1960s. This explicit scheme is very
easy to formulate but fails to give a correct solution when the viscosity is too small. To avoid
these unstable conditions, implicit methods such as CranckNicolson type scheme is presented,
but this scheme cannot be used for very small viscosities.

A variety of powerful methods has been presented, such as the homotopy analysis method
[10, 11], homotopy perturbation method [8], the Exp-function method [18], variational itera-
tion method [9] and the Adomian decomposition method [23]. By using the LADM we obtain
analytical solutions for the integro-differential equations. Our aim in this paper is to obtain
the numerical and analytical solutions by using the modified Laplace Adomian decomposition
method and explicit and implicit numerical methods. The remainder of the paper is organized as
follows: in Sections 2 and 3, a brief discussions for the modified Laplace Adomian decomposition
method and application of this method are presented and approximate solution for one example
is obtained. In Section 4 and 5, numerical methods and numerical results are discussion. Also,
in Section 6 we will study the convergence analysis. Also a conclusion is given in Section 7.
Section 8 ends this paper with a brief conclusion.

2. Modified Laplace Adomian decomposition method

The purpose of this section is to discuss the use of modified Laplace decomposition algorithm
for the integro-differential equations. We consider the general form of second order nonlinear
partial differential equations with initial conditions in the form

Lu(x, t) + Ru(x, t) + Nu(x, t) = h(x, t), u(x, 0) = f(x), ut(x, 0) = g(x), (2)

where L is the second order differential operator Lxx = ∂n

∂xn , R is the remaining linear operator,
N represents a general non-linear differential operator and h(x, t) is the source term. Applying
Laplace transform (denoted by L) on both sides of Eq. (2) we have

L[Lu(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[h(x, t)],

and by using the differentiation property of Laplace transform we obtain:

s2L[u(x, t)]− sf(x)− g(x) + L[Ru(x, t)] + L[Nu(x, t)] = L[h(x, t)],

and so:

L[u(x, t)] =
f(x)
s

+
g(x)
s2

− 1
s2
L[Ru(x, t)]− 1

s2
L[Nu(x, t)] +

1
s2
L[h(x, t)]. (3)
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The next step in Laplace decomposition method is representing the solution as an infinite series
given below

u(x, t) =
∞∑

n=0

un(x, t). (4)

The nonlinear operator is decomposed as

Nu(x, t) =
∞∑

n=0

An(x, t), (5)

where for every n ∈ N An is the Adomian polynomial given below

An =
1
n!

dn

dλn

[
N

( ∞∑

i=0

λiui

)]

λ=0

.

Using (3), (4) and (5) we get
∞∑

n=0

L[un(x, t)] =
f(x)
s

+
g(x)
s2

− 1
s2
L[Ru(x, t)]− 1

s2
L

[ ∞∑

n=0

An(x, t)

]
+

1
s2
L[h(x, t)]. (6)

Comparing both sides of (6) we have

L[u0(x, t)] = k1(x, s), (7)

L[u1(x, t)] = k2(x, s)− 1
s2
L[R0u(x, t)]− 1

s2
L [A0(x, t)], (8)

L[un+1(x, t)] = − 1
s2
L[Rnu(x, t)]− 1

s2
L [An(x, t)] , n ≥ 1, (9)

where k1(x, s) and k2(x, s) are Laplace transform of k1(x, t) and k2(x, t) respectively. Applying
the inverse Laplace transform to Eqs. (7)–(9) gives our required recursive relation as follows

u0(x, t) = k1(x, t), (10)

u1(x, t) = k2(x, t)− L−1

[
1
s2
L[R0u(x, t)]− 1

s2
L [A0(x, t)]

]
, (11)

un+1(x, t) = −L−1

[
1
s2
L[Rnu(x, t)]− 1

s2
L [An(x, t)]

]
, n ≥ 1. (12)

The solution through the modified Adomian decomposition method highly depends upon the
choice of k0(x, t) and k1(x, t), where k0(x, t) and k1(x, t) represent the terms arising from the
source term and prescribed initial conditions.

3. Application of the modified Adomian decomposition method

In this section we give one example to illustrate this method for the Burgers’ equation.

Example 1. Consider a nonlinear partial differential equation

ut + uux = uxx, u(x, 0) =
1
2
− 1

2
tanh

(x
4

)
. (13)

Applying the Laplace transform (denoted by L) we have

su(x, s)− u(x, 0) = −L(uux) + L(uxx),

or
u(x, s) =

1
s
u(x, 0)− 1

s
L(uux) +

1
s
L(uxx).
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Using initial condition (13) becomes

u(x, s) =
1
2s
− 1

2s
tanh

(x
4

)
− 1

s
L(uux) +

1
s
L(uxx).

Applying the inverse Laplace transform we get

u(x, t) =
1
2
− 1

2
tanh

(x
4

)
+ L−1

[
−1

s
L(uux) +

1
s
L(uxx)

]
. (14)

We decompose the solution as an infinite sum given below

u(x, t) =
∞∑

n=0

un(x, t). (15)

Using (15) on (14) we get
∞∑

n=0

un(x, t) =
1
2
− 1

2
tanh

(x
4

)
+ L−1

[
−1

s
L

( ∞∑

n=0

An(t)

)
+

1
s
L

∞∑

n=0

un,xx(x, t)

]
,

in which An =
∑n

j=0 ujun−j,x. The recursive relation is given below

u0(x, t) =
1
2
− 1

2
tanh

(x
4

)
,

u1(x, t) =
1
16

t
[
1− tanh2

( x
16

)]
,

u2(x, t) =
1

128
t2

[
tanh

(x
4

)
− tanh3

(x
4

)]
,

and so on. We use an 8-term approximation and set

app7 := u0 + u1 + u2 + ... + u7.

the maximum error occurs in the x-interval (−2, 2), so we have tabulated the absolute errors for
various times on this interval, in Table 1.

Our approximation has one more interesting property, we expand app7 using Taylors expan-
sion about (0,0) we would have

app(x, t) ∼= 1
2
− 1

8
x +

1
16

t +
1

384
x3 − 1

256
tx2 +

1
512

t2x− 1
3072

t3 +
1

491520
t5−

− 1
49152

xt4 +
1

12288
x2t3 − 1

6144
t2x3 + ...,

using the Taylor series gives the exact solution

u(x, t) =
1
2
− 1

2
tanh

[
1
4

(
x− 1

2
t
)]

. (16)

4. Numerical methods

4.1. Some discretization methods. The Burgers’ equation is given by

∂u
∂t

= −u
∂u
∂x

+ c
∂2u
∂x2

, (17)

we consider this equation in the case of initial condition with periodic boundary condition. There
are several numerical methods for solving Burgers’ equation based on discritization on a fixed
grid for both space and time variables.

ui
n+1 = ui

n−1 +
µ

6
(un

i−1 + un
i + un

i+1)(u
n
i−1 − un

i+1) +
c

∆x
(un

i−1 − un
i + un

i+1), (18)
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In the above formula the artificial boundary at n = 0 is approximated by ui
−1 = ui

1. By
approximating the artificial boundary with extrapolation methods along characteristics, better
results can be extracted. In this scheme x = xi = i∆x, t = tn = n∆t and µ = ∆t

∆x , by

u(x, 0) = sin(πx), c = 10−3, ∆x = 0.005, ∆t = 0.01.

This method is conditionally stable [1]. Another numerical scheme is the implicit CrankNicolson
method, its formulation is

∆uj
n+1

∆t
= −Lx(uj

n + uj
n+1)

2
+ c

Lxx(uj
n + uj

n+1)
2

, (19)

where ∆uj
n+1 = uj

n+1 − uj
n and Lx = (−1,0,1)

2∆x , Lxx = (1,−2,1)
(∆x)2

. By reducing these equations to a
system of linear equations, we can overcome on the effect of nonlinear terms appeared in (19)
and then we can find the solutions. In the case of very small viscosity, wiggles appear and cause
the solution to be perturbed. In this situation other numerical schemes must be used. In the
following we show the c = 10−4 at the top and the bottom of the shock wiggles. This implicit
scheme is unconditionally stable by Von Neumann criteria and has a truncation error of order
O(h2, k2). As we see there are some problems in the long time solution of Burgers’ equation
which depend on the viscosity term. In this case we examine some symplectic and multisym-
plectic box methods on Burgers’ equation. These methods are very high quality schemes for
the long time integration of nonlinear, conservative partial differential equations [1,2]. These
numerical schemes are constructed on Finite Difference Discretization (FDD) which are repre-
sented as explicit and implicit discretization methods. Among these methods the semi-explicit
symplectic box method is very effective because of ensuring that no artificial wiggles appear in
the approximate solution.

4.2. Multisymplectic box scheme for Burgers’ Equation. This type of compact discretiza-
tion method in both x and t is centered at a cell (box), whose corners are

(xi, tn), (xi, tn+1), (xi+1, tn), (xi+1, tn+1).

Based on this compact scheme some multisymplectic box and fully implicit narrow box schemes
can be constructed. We apply two 12-point and 8-point multisymplectic schemes on Burgers
equation. For applying these discretization methods on Burgers equation, Burgers equation can
be represented by the following formula:

ut = −uux + cuxx = −V′(u) + cuxx, V(u) =
u3

6
. (20)

By applying the 8-point multismyplectic schemes on Burgers’ equation we have the following:

ut =
1

8∆t

[
1 3 3 1
−1 −3 −3 −1

]
u =

=
1

2∆x

[ −1 0 1
]
V ′

(
1
4

[
1 1
1 1

]
u

)
+

1
2(∆x)2

[
1 −2 1
1 −2 1

]
u.

Also by applying the 12-point multisymplectic scheme on Burgers’ equation the following dis-
cretization method with stencil notation is resulted:

ut =
1

16∆t




1 3 3 1
0 0 0 0
−1 −3 −3 −1


u =
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= − 1
4∆x

[ −1 0 1
−1 0 1

]
V ′

(
1
4

[
1 1
1 1

]
u

)
+

1
4(∆x)2




1 −2 1
2 −4 2
1 −2 1


u.

As we saw already in constructing the two above schemes, when using the 8-point scheme for
initializing 12- point scheme identical results up to round off error level are obtained [1].

One example of the Burgers’ equation is considered in this section by multisymplectic box
methods. The multisymplectic scheme is fully implicit scheme and is more accurate than explicit
and semi-explicit methods and has stability for large time steps and different parameters [4, 5].
The one above example showed that if we want to get more accurate solution in longer times
the finer mesh is required. In the latter case the set of equations will be very large and it takes
more time and memory for solving, which we did not examine it in this article. In the case of
steady state and dispersion the stability analysis of these schemes can be found in [4].

5. Numerical results

We have examined some well-known numerical methods and two 8-point and 12-point multi-
symplectic box methods on Burgers’ equation.

Example 1. Consider Burgers’ equation ut = uux + cuxx with the following exact solution:

u(x, t) =
sinh( x

2c)
cosh( x

2c) + exp(− t
4c)

.

The viscosity term in this equation is c = 0.00075 and x ∈ [0, 1], t ≥ 0. We can find that
the 12- point multisymplectic box method is more accurate than 8-point multisymplectic box
method and in both cases the discretization error is decreasing exponentially when x grows. We
have examined this algorithm for large time and variety of viscosity terms too. The errors with
h = 0.05, k = 0.01 are presented in Table 1.

6. Convergence analysis

Here, we will study the convergence analysis as same manner in [20] of the LADM ap-
plied to the Burgers’ equation. Let us consider the Hilbert space H which may define by
H = L2((α, β)X[0, T]) the set of applications:

u : (α, β)X[0,T] → R with
∫

(α,β)x[0,T]
u2(x, s)dsdτ < +∞.

Now we consider the Burgers’ equation in the light of above assumptions and let us denote

L(u) =
∂

∂t
u,

then the Burgers’ equation become in a operator form

L(u) = −u
∂

∂x
u + c

∂2

∂x2
u,

The LADM is convergence if the following two hypotheses are satisfied:
(H1) (L(u)− L(v), u− v) ≥ k ‖ u− v ‖2; k > 0, ∀u, v ∈ H
(H2) whatever may be M > 0, there exist a constant C(M) > 0 such that for u, v ∈ H with
‖ u ‖≤ M, ‖ v ‖≤ M we have: (L(u)− L(v), u− v) ≤ C(M) ‖ u− v ‖‖ w ‖ for every w ∈ H. (see,
[20] and the references there in).
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Theorem 6.1. (Sufficient condition of convergence for Example 1). The Laplace Adomian
method applied to the Burgers’ equation as follows

L(u) =
∂

∂t
u = −u

∂

∂x
u + c

∂2

∂x2
u,

without initial condition, converges towards a particular solution.

Proof. Now, we will verify the conditions (H1) and (H2) of convergence. We will start to verify
the convergence hypotheses (H1) for the operator L(u): i.e., ∃k > 0, ∀u, v ∈ H, we have:

L(u)− L(v) = −
[
u

∂

∂x
u− v

∂

∂x
v
]

+ c
∂2

∂x2
(u− v) = −1

2
∂

∂x
[u2 − v2] + c

∂2

∂x2
(u− v).

Then we get

(L(u)− L(v),u− v) =
1
2

(
− ∂

∂x
(u2 − v2),u− v

)
+ c

(
∂2

∂x2
(u− v), u− v

)
. (21)

Since ∂
∂x and ∂2

∂x2 are differential operators in H, then there exists constants λ1 and λ2, such that
(

∂2

∂x2
(u− v),u− v

)
≤ λ1‖ u− v ‖2, (22)

and according the Schwartz inequality, we get
(

∂

∂x
(u2 − v2),u− v

)
≤ λ2 ‖ u2 − v2 ‖‖ u− v ‖.

Now we use the mean value theorem, then we have
(

∂

∂x
(u2 − v2),u− v

)
≤ λ2 ‖ u2 − v2 ‖‖ u− v ‖= 2λ2η ‖ u− v ‖2≤ 2λ2M ‖ u− v ‖2,

where u < η < v and ‖ u ‖, ‖ v ‖≤ M. Therefore:
(

∂

∂x
(u2 − v2), u− v

)
≤ 2λ2M ‖ u− v ‖2 ⇔

⇔
(
− ∂

∂x
(u2 − v2),u− v

)
≥ 2λ2M ‖ u− v ‖2, (23)

Substituting (21) and (22) into (23) we get

(L(u)− L(v), u− v) ≥ (λ1 + λ2M) ‖ u− v ‖2= k ‖ u− v ‖2,

where k = λ1 + λ2M. Hence, we find the hypothesis (H1). Now we verify the convergence hy-
potheses (H2) for the operator L(u) which is for every M > 0, there exist a constant C(M) > 0
such that for u, v ∈ H with ‖ u ‖≤ M, ‖ v ‖≤ M we have (L(u)− L(v), u− v) ≤ C(M) ‖ u− v ‖‖ w ‖
for every w ∈ H. For that we have:

(L(u)− L(v),w) =
1
2

(
− ∂

∂x
(u2 − v2),w

)
+ c

(
∂2

∂x2
(u− v), w

)
≤

≤ (M ‖ u− v ‖‖ w ‖ + ‖ u− v ‖‖ w ‖) =

= (1 + M) ‖ u− v ‖‖ w ‖ =

= C(M) ‖ u− v ‖‖ w ‖,
where C(M) = 1 + M and therefore (H2) is hold. The proof is complete. ¤
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7. Conclusions

The main idea of this work was to give a simple method for solving the Burgers’ equation. We
carefully applied a reliable modification of Laplace decomposition method for this equation. The
main advantage of this method is the fact that it gives the analytical solution. Also, two types
of multisymplectic box methods were considered and implemented on Burgers’ equation. These
methods are fully implicit methods which are more accurate than explicit and semi-explicit
methods. In both cases the artificial wiggle which is appeared in usual discretization methods is
diminished. Table showed their advantages on well-known usual discretization methods. In the
above example we observed that the LADM with the initial approximation obtained from initial
conditions yield a good approximation to the exact solution only in a few iterations. It is also
worth noting that the advantage of the decomposition methodology displays a fast convergence
of the solutions. The illustrations show the dependence of the rapid convergence depend on the
character and behavior of the solutions just as in a closed form solutions.
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